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Abstract This paper presents a comprehensive methodology for solving and analyzing quadratic

and nonlinear programming problems in fully fuzzy environment. The solution approach is based

on the Arithmetic Fuzzy Logic-based Representations, previously founded on normalized fuzzy

matrices. The suggested approach is generalized for the fully fuzzy case of the general forms of

quadratic and nonlinear modeling and optimization problems of both the unconstrained and

constrained fuzzy optimization problems. The constrained problems are extended by incorporating

the suggested fuzzy logic-based representations assuming complete fuzziness of all the optimization

formulation parameters. The robustness of the optimal fuzzy solutions is then analyzed using the

recently newly developed system consolidity index. Four examples of quadratic and nonlinear pro-

gramming optimization problems are investigated to illustrate the efficacy of the developed formu-

lations. Moreover, consolidity patterns for the illustrative examples are sketched to show the ability

of the optimal solution to withstand any system and input parameters changes effects. It is demon-

strated that the geometric analysis of the consolidity charts of each region can be carried out based

on specifying the type of consolidity region shape (such as elliptical or circular), slope or angle in

degrees of the centerline of the geometric, the location of the centroid of the geometric shape, area

of the geometric shape, lengths of principals diagonals of the shape, and the diversity ratio of con-

solidity points. The overall results demonstrate the consistency and effectiveness of the developed

approach for incorporation and implementation for fuzzy quadratic and nonlinear optimization

problems. Finally, it is concluded that the presented concept could provide a comprehensive

methodology for various quadratic and nonlinear systems’ modeling and optimization in fully fuzzy

environments.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The fuzzy systems in general can be designed to supplement
the interpretation of uncertainties for real world random phe-
nomenon. The fuzzy decision techniques allow collecting sub-

jective data on what analyst perceive as relevant risk factors,
and their relative importance, and to relatively build individual
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or group models for risk assessment. In dealing with these
types of problems, several relevant techniques can be applied
such as fuzzy mathematical programming, stochastic program-

ming, fuzzy neural networks, fuzzy genetic algorithms, fuzzy
particle swarm techniques, and fuzzy ant colony approach.
Usually the available techniques can handle either single

objective or multi-objectives formulations [1–4].
Fuzzy logic optimization is an extension of global optimiza-

tion techniques operating in fuzzy environment. The classifica-

tions of the common fuzzy logic optimization techniques are
elucidated in Fig. 1, [5–8]. In general, these methods represent
an extension of global optimization techniques in fuzzy envi-
ronment. Examples of the common fuzzy logic optimization

approaches reported in the literature are fuzzy mathematical
programming, fuzzy evolutionary algorithms, and fuzzy oper-
ations research techniques.

Most of these fuzzy optimization problems formulations
are based on the characteristics of fuzzy goal, fuzzy constraints
and fuzzy coefficients. In fuzzy environment, mathematical

optimization models have to take into consideration of both
flexible constraints and vague objective function. Many fuzzy
optimization problems are formulated based on this

conjunction.
In real life problems, various variables could have different

fuzzy membership functions, fuzzy intervals and fuzzy matri-
ces [9–12]. A normalization step has to be applied in order

to unify these membership functions in one combined (com-
promising) function for each problem that can be applied for
all situations as presented by Gabr and Dorrah [13–19].

There are many other areas in which fuzzy modeling and opti-
mization can be used including the following: traffic systems,
robotics, computers, industrial processes, biology and medi-

cine, projects management and business. This list is by no
means exhaustive. Virtually any computer decision-making
system has the potential to benefit from the application of

fuzzy logic for decision making under uncertainty.

2. The proposed methodology

2.1. The consolidity index

In this paper, a comprehensive methodology is presented for

solving and analyzing general classes of non-constrained and
constrained quadratic and nonlinear programming optimiza-
tion problems in open fully fuzzy environment.1 The approach

used is by applying the arithmetic and visual fuzzy-based rep-
resentation developed on the basis of normalized fuzzy matri-
ces [13–19]. The robustness of the optimal fuzzy solutions will

be then tested by the system consolidity index as defined in
Appendix A [19–25].

Consolidity (the act and quality of consolidation) is a mea-

sured by the systems output reactions versus combined
input/system parameters reaction when subjected to varying
environments and events [1–3]. Moreover, consolidity can
1 An ‘‘open Fully Fuzzy Environment’’ is defined as that all fuzzy

levels can freely change all over thepositive and negative values of the

environment. A subclass of this environment is bounded fuzzy

environment where all fuzzy levels can only change within restricted

positive and negative ranges of the environment.
govern the ability of systems to withstand changes when sub-
jected to incurring events or varying environments. In fact,
consolidity is the scaling factor of managing system changes.

2.2. The consolidity chart

The analysis of the consolidity chart (or patterns chart) will be

based on constructing the best geometric region that appropri-
ately embodies all the various consolidity points obtained
through the overall output fuzziness magnitude FOj j at the y-

axis versus the overall combined input and system fuzziness
magnitude FIþSj j at the x-axis. The definition of both FOj j
and FIþSj j are given in Appendix A [22]. Such geometric region

could follow many shapes such as the elliptical, circular or
other forms. Furthermore, it can be analyzed for its geometric
features as presented in the following table:
Symbol
 Description
R
 Type of consolidity region shape (elliptical, circular, or

others)
Region

class
Types of region classes are as follows: (i) consolidated,

(ii) neutrally consolidated, (iii) unconsolidated, (iv)

quasi-consolidated, (v) quasi-unconsolidated, or (vi)

mixed-consolidated
S
 Slope or angle in degrees of the S (degrees) = tan�1

(overall consolidity index)
C ¼ ðx; yÞ
 Coordinates of the centroid of the geometric shape R
A
 Area of the geometric shape of R in pu2
l1
 Length of major diagonal of region (pu)
l2
 Length of minor diagonal of region (pu)
l2=l1
 Diversity ratio of consolidity points (unitless)
Two case studies of the consolidity chart regions of ellipti-
cal and circular types are shown in Fig. 2. The analysis of the
two cases can be summarized as follows:
Symbol
 Meaning
 Case I
 Case II
R
 Shape type
 Elliptical
 Circular
Region

class
Region location
 Unconsolidated
 Consolidated
S
 Slope
 63.05�, or tan�1
(1.9667)
21.80�, or
tan�1 (0.4000)
C ¼ ðx; yÞ
 Centroid
 (3.0,6.0)
 (5.0,2.0)
A
 Area (pu2)
 11.5
 6.6
l1
 Length of major

diagonal ðpuÞ

5.75
 2.90
l2
 Length of minor

diagonal ðpuÞ

2.55
 2.90
l2=l1
 Diversity ratio
 0.4435
 1.0000
In the above analysis, the position of the centroid
C ¼ ðx; yÞ (upward or downward) within main centerline

depends mainly on the nature of the affected input fuzzy influ-
ences which are particular for each specific application. Higher
values of such centroids mean higher fuzzy input effects or

influences. In addition, a better system from the consolidity
chart point of view is the one with smaller slope, smaller area
A and smaller diversity ratio l2=l1.
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Figure 1 Various classifications of fuzzy modeling and optimization techniques.

Quadratic and nonlinear programming problems solving and analysis in fully fuzzy environment 459
The physical significance of the consolidity region is that it

marks the boundary of all system interactive behavior resulting
from all exhaustive internal and external influences. For
instance, at a specific effect, the corresponding consolidity

region describes all the plausible points of normalized input–
output (fuzzy or non-fuzzy) interactions of such specific system.

The features of the consolidity charts will be the basis of the

analysis of various optimization problems solutions given in
the following sections.

3. Fuzzy quadratic programming problem

3.1. The fuzzy methodology development

A typical quadratic programming model is defined as
follows [4]:
Maximize z ¼ PXþ XTQX ð1Þ

subject to

DX 6 eX P 0 ð2Þ

where

X ¼ ðx1; x2; . . . ; xnÞT ð3Þ

P ¼ ðp1; p2; . . . ; pnÞ ð4Þ

e ¼ ðe1; e2; . . . ; emÞT ð5Þ

D ¼

d11 d12 � � � d1n

d21 d22 � � � ..
.

dm1 dm2 � � � dmn

2
6664

3
7775 ð6Þ



l

Figure 2 A sketch illustrating two case studies of the consolidity chart regions (Case I: Elliptical, Case II: Circular).

2 The reason of introducing the approach of normalized fuzzy level

had arisen from the inherent inconsistency in the fuzzy number

operation. For instance if X and Y are fuzzy numbers with defined

fuzzy intervals, then the fuzzy theory could lead to that:

fuzzinessðX � X Þ– 0, and fuzzinessðY þ X � X Þ– fuzzinessðY Þ. Such
inconsistency was solved in the normalized fuzzy level approach such

that: fuzziness X � Xð Þ ¼ 0, and fuzziness Y þ X � Xð Þ ¼ fuzziness Yð Þ.
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and

Q ¼

q11 q12 � � � q1n

q21 q22 � � � ..
.

qm1 qm2 � � � qmn

2
664

3
775: ð7Þ

The function XTQX defines a quadratic form, such that ð�ÞT
indicates the transpose of (Æ). The matrix Q is assumed

symmetric and negative-definite. This means that z is strictly
concave. The constraints are linear which guarantees a convex
solution space. The solution to this problem is based on the

Kuhn–Tucker (KKT) necessary conditions. Because z is
strictly concave and the solution space is convex, these condi-
tions are also sufficient for a global optimum.

The above quadratic problem solution reduces to the

compact form [4]

Maximize z ¼ c1x1 þ c2x2 þ � � � þ cn0xn0

subject to aj1x1 þ aj2x2 þ � � � þ ajnxn0 6 bj

j ¼ 1; 2; . . . ;m0

xi P 0; i ¼ 1; 2; . . . ; n0

ð8Þ

where n0 comprises all problem basic variables, Lagrange
multipliers, slacks, etc.

Now, incorporating the fuzzy logic arithmetic representa-

tion to the above problem of (8), we have the following fuzzy
logic-based linear programming formulation:

Maximize z ¼ c0Tx

subject to A0x 6 b0

and x P 0

ð9Þ
where ð�Þ0 indicates the fuzzy logic arithmetic representation of

(Æ), as illustrated in the following examples:

cj ¼ ðcj; ‘cjÞ ð10Þ
bi ¼ ðbi; ‘biÞ ð11Þ

and

aij ¼ ðaij; ‘aij Þ ð12Þ

where ‘ð�Þ denotes the fuzzy level of (Æ).
These fuzzy levels represent the ambiguity and uncertainty

that could be found in the model parameters. They act similarly
to conventional fuzzy numbers where fuzzy sets operation such
as union and interaction as well as the notion of a-cuts, resolu-
tion, and the extension principle are all applicable [7]. In gen-
eral, the normalized fuzzy level concept approach applied in
this work is a linearized form of conventional fuzzy numbers.2

It has been previously elaborated that such normalized
fuzzy levels concept is identical to that of the conventional
fuzzy numbers for addition operations and gives average

weighted fuzziness interval results of the subtraction opera-
tions. Moreover, it yields similar results of multiplications
and divisions operations after ignoring the second order rela-
tive variations terms. However, the suggested approach offers



Table 1 Modified dual Simplex tableau of the fuzzy logic-

based linear programming.

x1 x2 . . .

Value Fuzzy level Value Fuzzy level

a11 ‘a11 a12 ‘a12 . . .

a21 ‘a21 a22 ‘a22 . . .

..

. ..
. . . .

ai1 ‘i1 ai2 ‘i2 . . .

..

. ..
.

c1 ‘c1 c2 ‘c2 . . .

xj RHS

Value Fuzzy level Value Fuzzy level

a1j ‘a1j . . . = b1 ‘b1 Row 1

a2j ‘a2j . . . = b2 ‘b2 Row 2

. . . = ..
. ..

.

aij ‘aij . . . = bi ‘bi Row i

= ..
.

ci ‘ci . . . = 0 0 z
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additional advantages of linearity, reversibility, simplicity, and
applicability [18,19].

The methodology is based on two parts. The first is the
solution of the original (quadratic or nonlinear) optimization
problem in exact forms which is presented in detail. The sec-

ond part is the calculation of the corresponding fuzzy level
at each step of computation which is straightforward following
the fuzzy operation rules of ðþ;�; �; =Þ. Detailed methodology

for consolidity calculations was published recently in reference
[22]. During implementation procedure in this paper, the exact
fractional values of fuzzy levels are preserved all over the cal-
culations and are rounded to integer values only for presenta-

tion at the final results.
Following the above representation, the Simplex tableau

can be expressed as shown in Table 1. The corresponding mod-

ified fuzzy logic-based algorithm is a direct extension to the
Simplex Method algorithm.. It follows that for each iteration,
we have for the corresponding fuzzy levels:

Pivot row:

‘akj ¼ ð‘akj � ‘akmÞ ð13Þ
Pivot columns:

All fuzzy logic levels ¼ 0 ð14Þ

Other coefficients:

‘aij ¼ ‘faij � aim � aki=akmg ð15Þ
and

‘ci ¼ ‘fci � cmaki=akmg; ð16Þ
where ‘{Æ} is an operator that denotes the fuzzy level of {Æ}.

The calculation of the Simplex tableau of Table 1 can then

be expressed using the pivoting rules into two steps:
Step 1:

Let

a0ij ¼ aimaki=akm ð17Þ
then

‘fa0ijg ¼ ‘faim � aki=akmg ¼ ‘faimg þ ‘fakig � fakmg: ð18Þ
Step 2:

It follows then that

‘aij ¼ ‘ aij � a0ij

n o
¼

aij‘aij � a0ij‘a0ij
aij � a0ij

: ð19Þ

A simple function on spreadsheet model can be easily pro-
grammed to calculate such Simplex method iteration directly
and obtaining the corresponding fuzzy level for each cell at each

step of calculations. In general, such fuzzy levels could be frac-
tional all over the calculations steps. As far as (19) gives the
new fuzzy level as a weighted average of the two other bounded

levels, it can be proven that the newvalues of these fuzzy level will
also be bounded as far as the solutions of the Simplex algorithm
are bounded. Mathematical proof of the boundedness of the

fuzzy levels during solution iterations is left for future research.

3.2. Illustrative example 1

Consider the quadratic programing optimization problem

[4,16]:

Maximize

z¼ p1 �x1þp2 �x2þq11 �x2
1þq12 �x1 �x2þq21 �x1 �x2þq22 �x2

2

ð20Þ
subject to

d1x1þd2x26 e1

x1;x2 P 0:

ð21Þ

The problem can be expressed in matrix form as follows:

Maximize z ¼ ½p1; p2� �
x1

x2

� �
þ ½x1; x2� �

q11 q12

q21 q22

� �
�

x1

x2

� �

ð22Þ

subject to

½d1; d2�
x1

x2

� �
6 e1

x1; x2 P 0:

ð23Þ

The Kuhn–Tucker conditions are given as [4]

�2q11 �2q12 d1 �1 0 0

�2q21 �2q22 d2 0 �1 0

d1 d2 0 0 1 1

2
64

3
75 �

x1

x2

k1

l1

l2

s1

2
666666664

3
777777775
¼

p1

p2

e1

2
64

3
75: ð24Þ

Eq. (24) can be formulated as two-phase linear program-

ming for the following numerical values given in Table 2,
describing the input of the numerical example variables values
and their corresponding fuzzy levels.

The developed approach is applied for simplicity using
spreadsheet representation with Visual Basic Applications
(VBA) programming and obtaining the corresponding fuzzy
level for each cell at each step of calculations. However, the

approach is general and can be applied to other unlimited
forms of representations and other known programming soft-
ware. Using the two phase Simplex technique, the final output

results of different scenarios are elucidated in Table 3. The
results of different scenarios of this table provide a good
insight to the effect of various input fuzziness on the fuzziness

of the optimized outputs.



Table 2 Input variables values of quadratic fuzzy optimiza-

tion of Illustrative example 1.

Ser Parameter Value Fuzzy levels scenario no

I II III IV V VI VII

1 p1 4 �3 �2 �1 1 2 3 1

2 p2 6 �3 �2 �1 1 2 3 3

3 q11 �2 3 2 1 �1 �2 �3 2

4 q12 �1 �3 �2 �1 1 2 3 1

5 q21 �1 �3 �2 �1 1 2 3 2

6 q22 �2 3 2 1 �1 �2 �3 1

7 d1 1 1 1 1 �1 �1 �1 1

8 d2 2 1 1 1 �1 �1 �1 1

9 e1 2 �1 �1 �1 1 1 1 �1
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The numerical application of the fuzzy logic-based quadra-
tic programming demonstrates that the proposed technique is

highly pragmatic and easy to be applied for analyzing fuzziness
in various numerical calculations.

The problem consolidity index is also shown in the Table 3.

The input for the consolidity analysis was the overall fuzziness
of all input parameters of Table 3 while the output was taken
as the fuzziness of the performance index z. The consolidity

chart of the problem described by plotting the overall output

fuzziness factor FOj j versus input fuzziness factor FðSþIÞ
�� �� is

shown in Fig. 3.
Applying the geometric analysis to the consolidity chart

of Illustrative example 1 elucidated in Fig. 3, we obtain the

following results:
F
(

(

v

Symbol
3 It is remark

O=ðIþSÞ based o

<0.5), low (0

>15) [20–24].

alue of consol
Meaning
ed that the typical ranges of

n previous real life application

.5–1.5), moderate (1.5–5), high

A good practical consolidated

idity index F O=ðIþSÞ ¼ 1:5.
Results
R
 Shape type
 Elliptical
Region

Class
Region location
 Quasi-unconsolidated
S
 Slope
 56.99�, or tan�1
(1.5392)
C ¼ ðx; yÞ
 Centroid
 (2.4,3.7)
A
 Area (pu2)
 12.4
l1
 Length of major diagonal

(pu)
5.8
l2
 Length of minor diagonal

(pu)
2.7
l2=l1
 Diversity ratio
 0.4655
The results elucidate that the consolidity region has a mod-
erate overall consolidity index and relatively high diversity
ratio. Furthermore, both the area of the consolidity region R
and the diversity ratio are moderate supporting the moderate

diversity of calculated consolidity points.
In real life systems the overall system consolidity will be

normally bounded indicating the robustness of the proposed

calculations scheme.3 These are due to the internal compensat-
ing effects of different fuzziness in the parameters incorporated
within these real life systems.
the consolidity indices

s are as follows: very low

(5–15), and very high

system should have the
4. Fuzzy unconstrained nonlinear programming problem

In this section, we demonstrate the applicability of the pro-
posed Arithmetic Fuzzy Logic-based Representation approach

to fully fuzzy nonlinear optimization problems by two
representative illustrative examples [4].

4.1. Illustrative example 2

Consider the nonlinear function F expressed as [4, 17]

F ¼ f x; y; zð Þ
¼ ax2 þ bxyþ cy2 þ dyzþ ez2 � fx� gy� hzþ i ð25Þ

such that all coefficients are fuzzy parameters.
The critical point of f can be determined using the

first-order necessary conditions as follows:

@f x; y; zð Þ
@x

¼ 2axþ by� f ¼ 0 ð26Þ

@f x; y; zð Þ
@y

¼ bxþ 2cyþ dz� g ¼ 0 ð27Þ

and

@f x; y; zð Þ
@z

¼ dyþ 2ez� h ¼ 0: ð28Þ

The conditions can be expressed in the following matrix
equation

2a b 0

b 2c d

0 d 2e

2
64

3
75

x

y

z

2
64
3
75 ¼

f

g

h

2
64
3
75: ð29Þ

The problem is solved for the numerical parameters shown
in Table 4 for different scenarios of input fuzzy levels.

It can easily be checked that the above solution is a local

minimum verifying the second-order sufficient conditions.
The input for the consolidity analysis was the overall fuzziness
of all input parameters of Table 4 while the output was taken

as the fuzziness of the performance function F. The consolidity
chart of the problem described by plotting the overall output

fuzziness factor FOj j versus input fuzziness factor FðSþIÞ
�� �� is

shown in Fig. 4.

Applying the geometric analysis to the consolidity chart of
Illustrative example 2 shown in Fig. 4, we get the following
results:
Symbol
 Meaning
 Results
R
 Shape type
 Elliptical
Region

class
Region location
 Unconsolidated
S
 Slope
 73.67�, or tan�1
(3.4136)
C ¼ ðx; yÞ
 Centroid
 (2.22, 7.35)
A
 Area (pu2)
 53.2
l1
 Length of major diagonal

(pu)
12.45
l2
 Length of minor diagonal

(pu)
5.40
l2=l1
 Diversity ratio
 0.4337



Table 3 Output results of quadratic fuzzy optimization of Illustrative example 1.

Parameter Optimal value Fuzzy levels scenario no

I II III IV V VI VII

x1 0.3333 �6 �3 �3 3 3 6 �3
x2 0.8333 �1 �1 �1 1 1 1 �2
k1 1.0000 �1 0 1 �1 0 1 1

z 4.1666 �6 �4 �2 2 4 6 2

Calculated consolidity indexa FO=ðIþSÞ 1.5429 1.5652 1.6364 1.6364 1.5652 1.5429 1.2857

a Average value of consolidity index FO=ðIþSÞ ¼ 1:5392.
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Figure 3 Consolidity region (quasi-unconsolidated class) of the
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The results indicate that the consolidity region has a moder-
ate overall consolidity index. Moreover, the area of the conso-

lidity region R is extremely large and the diversity ratio is

relatively above moderate levels supporting the very high
diversity of calculated consolidity points.

4.2. Illustrative example 3

Determine the local minimum of the fuzzy function expressed

as [4,17]:

f x; yð Þ ¼ ayþ bxecy þ dx3 ð30Þ

where a; b; c and d are fuzzy parameters.
The local minimum of fðx; yÞ satisfies the first order neces-

sary conditions, expressed as follows:

ðiÞ @f x; yð Þ
@x

¼ 0 becy þ 3 d x2 ¼ 0 ð31Þ

ðiiÞ @f x; yð Þ
@y

¼ 0 aþ bcxecy ¼ 0: ð32Þ

optimal solution fuzziness results of Illustrative example 1.
From (i) and (ii) we have

x3 ¼ a

3cd
: ð33Þ

This gives

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a

3cd

� �
3

r
ð34Þ

and

y ¼ 1

c
� ln a

�bcx
� �

: ð35Þ

The numerical solution of the illustrative example 3 is

shown in Table 5 for different input fuzziness level scenarios.
The input for the consolidity analysis was the overall fuzzi-

ness of all input parameters of Table 5 while the output was

taken as the fuzziness of the performance index fðx; yÞ. The
consolidity chart of the problem described by plotting the
overall output fuzziness factor FOj j versus input fuzziness fac-
tor FðSþIÞ

�� �� is shown in Fig. 5.

Applying the geometric analysis to the consolidity chart of

Illustrative example 3 sketched in Fig. 5, yields the following
results:
Symbol
 Meaning
 Results
R
 Shape type
 Elliptical
Region

class
Region location
 Quasi-unconsolidated
S
 Slope
 62.29� or tan�1

(1.9039)
C ¼ ðx; yÞ
 Centroid
 (2.5, 4.8)
A
 Area (pu2)
 22.5
l1
 Length of major diagonal

(pu)
8.9
l2
 Length of minor diagonal

(pu)
3.2
l2=l1
 Diversity ratio
 0.3596
The results show that the consolidity region has a moderate
overall consolidity index and relatively moderate diversity

ratio. Moreover, the area of the consolidity region R is moder-
atesupporting the moderate diversity of calculated consolidity
points.
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Figure 4 Consolidity region (unconsolidated class) of the

optimal solution fuzziness results of Illustrative example 2.

Table 5 Results of the nonlinear fuzzy optimization of Illustrative

Parameter Value Fuzzy levels scenario no

I II III

a 6 1 3 �1
b �1 �2 �5 �2
c 1 4 4 1

d 2 �3 3 �2
x 1 0 �1 0

y lnð6Þ �5 �6 �1
fðx; yÞ 6.7506 �2 �5 �2
Calculated consolidity indexa FO=ðIþSÞ 2.4017 1.7905 2.285

a Average value of consolidity index FO=ðIþSÞ ¼ 1:9039.

Table 4 Results of the nonlinear fuzzy optimization of Illustrative example 2.

Parameter Value Fuzzy levels scenario no

I II III IV V VI VII VIII IX

a 2 1 3 �3 �2 4 2 1 1 2

b 1 2 3 3 �4 3 4 1 2 2

c 1 1 �3 �3 �3 2 3 2 2 1

d 1 1 1 1 3 1 1 2 2 1

e 1 2 �2 �2 �2 1 4 1 1 3

f 6 3 1 1 2 1 2 1 2 3

g 7 2 4 4 4 2 1 2 3 1

h 8 1 1 3 3 1 2 1 3 2

i 9 1 2 3 4 2 1 2 1 1

x 1.636 2 �1 4 3 �2 1 0 1 1

y �0.545 4 8 �4 �1 5 0 1 2 1

z 4.273 �1 4 5 5 0 �2 0 �2 -1

F 2.595 9 9 12 �6 10 2 3 �3 2

Calculated consolidity indexa FO=ðIþSÞ 5.6218 5.2762 5.9064 2.2698 5.5511 1.2456 2.2390 1.2852 1.3271

a Average value of consolidity index FO=ðIþSÞ ¼ 3:4136.
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5. Fuzzy constrained nonlinear programming problem using

Lagrangean technique

5.1. The fuzzy methodology development

Consider the general classical nonlinear optimization formula-

tion, expressed as [4]:

Minimize Z ¼ fðXÞ ð36Þ

subject to

gðXÞ ¼ 0 ð37Þ

where X ¼ ðx1; x2; . . . ; xnÞ and g ¼ ðg1; g2; . . . ; gmÞ
T
. The func-

tions fðXÞ and giðXÞ, i = 1, 2, . . . , m are twice continuously

differentiable.
Define

LðX; kÞ ¼ fðXÞ � k � gðXÞ ð38Þ

such that L designates the Lagrangean function of the problem
and the parameters k are the Lagrange multipliers.

The equations

@L

@k
¼ 0;

@L

@X
¼ 0 ð39Þ
example 3.

IV V VI VII VIII IX

�3 5 4 2 2 5

2 4 5 1 4 4

�2 2 4 3 1 �1
�1 3 2 �3 2 2

0 1 �1 1 0 1

0 3 �6 �4 �2 1

�4 8 �4 �3 �1 7

7 1.2221 2.2617 1.1412 3.3702 0.8432 1.8186
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Figure 5 Consolidity region (quasi-unconsolidated class) of the

optimal solution fuzziness results of Illustrative example 3.
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provide the necessary conditions for determining stationary
points of fðXÞ subject to gðXÞ ¼ 0. The sufficiency conditions

for the Lagrangean method can be stated as follows [4]. Define

HB ¼
0 P

PT Q

� 	
ðmþnÞ�ðmþnÞ

ð40Þ

where

P ¼

rg1 ðXÞ

..

.

rgmðXÞ

0
BB@

1
CCA

m�n

ð41Þ

and

Q ¼ @2LðX; kÞ
@xi@xj











n�n

for all i and j: ð42Þ

The matrix HB is the bordered Hessian matrix.
Given the stationary point ðX0; k0Þ for the Lagrangean

function LðX; kÞ and the bordered Hessian matrix HB

evaluated at ðX0; k0Þ, then X0 is:
Table 6 Results of the nonlinear fuzzy optimization of Illustrative

Parameter c1 c2 c3 a11 a12 a13
Value 1 1 1 1 1 3

Fuzzy levels 1 �1 �1 1 1 �1
�3 3 4 4 �3 4

�2 2 3 3 �2 3

�1 1 2 1 �1 3

1 �1 �2 1 1 �1
2 �2 �2 2 2 �2
3 �3 �3 2 2 �1
2 �2 �2 3 2 3

1 �2 �1 1 2 �2
a Average calculated value of FO=ðIþSÞ ¼ 1:5242.
(i) A maximum point if, starting with the principal major

determinant of order (2m+ 1), the last (n � m) princi-

pal minor determinants of H B form an alternating sign

pattern starting with ð�1Þm�1 .
(ii) A minimum point if, starting with the principal minor

determinant of order (2m+ 1), the last (n � m) princi-

pal minor determinants of H B have the sign ð�1Þm.

These conditions are sufficient, but not necessary, for iden-
tifying an extreme point. This means that a stationary point
may be an extreme point without satisfying these conditions.

5.2. Illustrative example 4

Let us consider the following nonlinear constrained fuzzy

optimization problem [4,17]:

Minimize fðXÞ ¼ c1x
2
1 þ c2x

2
2 þ c3x

2
3 ð43Þ

subject to

g1ðXÞ ¼ a11x1 þ a12x2 þ a13x3 � b1 ¼ 0 ð44Þ

and

g2ðXÞ ¼ a21x1 þ a22x2 þ a23x3 � b2 ¼ 0 ð45Þ

Accordingly, the Lagrangean function of the problem as

defined in (38) can be expressed as

LðX; kÞ ¼ c1x
2
1 þ c2x

2
2 þ c3x

2
3 � k1ða11x1 þ a12x2 þ a13x3

� b1Þ � k2ða21x1 þ a22x2 þ a23x3 � b2Þ ð46Þ

This yields the following necessary conditions:

@L

@x1

¼ 2 � c1 � x1 � k1a11 � k2 � a21 ¼ 0 ð47Þ

@L

@x2

¼ 2 � c2 � x2 � k1 � a12 � k2 � a22 ¼ 0 ð48Þ

@L

@x3

¼ 2 � c3 � x3 � k1 � a13 � k2 � a23 ¼ 0 ð49Þ

@L

@k1

¼ �ða11 � x1 þ a12 � x2 þ a13 � x3 � b1Þ ¼ 0 ð50Þ

and

@L

@k2

¼ �ða21 � x1 þ a22 � x2 þ a23 � x3 � b2Þ ¼ 0: ð51Þ
example 4.

a21 a22 a23 b1 b2 fð�Þ FO=ðIþSÞ
a

5 2 1 2 5 0.8478

�2 �2 �2 �2 �1 1.8796 1.6011

3 3 3 �3 3 �2.6706 1.2285

2 2 2 �2 2 �1.8055 1.1864

2 1 1 �1 1 �2.3885 2.0347

�2 �1 �1 �2 �1 1.4342 1.3195

�2 �2 �2 2 �2 1.4002 1.2387

�3 �3 �3 �3 3 1.9621 1.3273

1 �1 3 2 2 2.9744 2.1378

�3 �2 �3 2 �2 2.3590 1.6441
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Figure 6 Consolidity region (quasi-unconsolidated class) of the

optimal solution fuzziness results for a11 ¼ 1 of Illustrative

example 4.
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The solution to these simultaneous equations of the illustra-
tive example 4 yields the results shown in Table 6. The table
also provides the consolidity analysis of the problem. The solu-

tion also includes: X0 ¼ ðx1; x2; x3Þ ¼ ð0:8043; 0:3478; 0:2826Þ
and k ¼ ðk1; k2Þ ¼ ð0:0870; 0:3043Þ.

To show that the given point is a minimum, consider the

Hessian matrix:

ð52Þ

Because n = 3 and m = 2, n � m= 1, and we need to

check the determinant of HB only, which must have the sign
of (�1)2 for the stationary point X0 to be a minimum.

Because determinant of HB = 460 > 0, X0 is a minimum
point. It can be easily checked that the above solution is a local
minimum verifying the second-order sufficient conditions.

The input for the consolidity analysis was the overall fuzzi-
ness of all input parameters of Table 5 while the output was
taken as the fuzziness of the performance index fðx; yÞ. The
consolidity pattern of the problem described by plotting the
overall output fuzziness factor FOj j versus input fuzziness

factor FðSþIÞ
�� �� is presented in Fig. 6.

Applying the geometric analysis to the consolidity chart of

Illustrative example 4 shown in Fig. 6 for a11 ¼ 1, gives the
following results:
Symbol
 Meaning
 Results
R
 Shape type
 Circular
Region class
 Region location
 Quasi-

consolidated
S
 Slope
 56.73�, or tan�1
(1.5242)
C ¼ ðx; yÞ
 Centroid
 (1.35, 2.20)
A
 Area (pu2)
 2.3
l1
 Length of major diagonal (pu)
 1.7
l2
 Length of minor diagonal (pu)
 1.7
l2=l1
 Diversity ratio
 1.0
The results show that the consolidity region has a moderate

overall consolidity index and relatively high diversity ratio.
Though the diversity ratio is very high due to the circular shape
of the region, the corresponding area of the consolidity region
R is very small supporting the low diversity of calculated con-

solidity points.

6. Fuzzy constrained nonlinear programming problem using

Jacobian technique

For the nonlinear optimization problem described in (36) and
(37), define [4]

X ¼ ðY;ZÞ ð53Þ

such that

Y ¼ ðy1; y2; . . . ; ymÞ; Z ¼ ðz1; z2; . . . ; zn�mÞ ð54Þ
The vectors Y and Z are called the dependent and indepen-

dent variables, respectively. Rewriting the gradient vectors of f
and g in terms of Y and Z, we get

rfðY;ZÞ ¼ ðryf;rzfÞ ð55Þ

and

rgðY;ZÞ ¼ ðryg;rzgÞ ð56Þ

Define

J ¼ ryg ¼

ryg1

..

.

rygm

0
BB@

1
CCA ð57Þ

and

C ¼ rzg ¼

rzg1

..

.

rzgm

0
BB@

1
CCA ð58Þ

where Jm�n denotes the Jacobian matrix and Cm�n�m the con-

trol matrix. The Jacobian J is assumed nonsingular. This is
always possible because the given m equations are independent
by definition. The components of the vector Y must thus be

selected such that the matrix J is nonsingular.
The original set of equations in @fðXÞ and @X can be written

as follows:

@fðY;ZÞ ¼ ryf � @Yþrzf � @Z ð59Þ

and

J � @Y ¼ �C � @Z: ð60Þ

Because J is nonsingular, its inverse J�1 exists. Hence,

@Y ¼ �J�1 � C � @Z: ð61Þ



Table 7 Results comparison of the nonlinear fuzzy optimiza-

tion of Illustrative example 4.

Parameter Value Corresponding fuzzy level of different

scenarios

I0 II0 III0 IV0 V0 VI0 VII0

c1 1 �3 �2 �1 1 2 3 1

c2 1 3 2 1 �1 �2 �3 1

c3 1 �3 2 2 �2 �3 �4 2

a11 1 3 2 1 �1 �2 �3 3

a12 1 �3 �2 �1 1 2 3 1

a13 3 �4 �1 �1 1 2 �4 3

a21 5 3 2 1 �1 �2 �3 �1
a22 2 3 2 1 �1 �2 �3 �1
a23 1 3 2 1 �1 �2 �3 3

b1 2 �1 �2 �1 1 2 4 2

b2 5 3 2 1 �1 �2 �3 �3
x1 0.8043 1 1 0 0 �1 �1 �3
x2 0.3478 �5 �3 �2 2 3 5 2

x3 0.2826 1 �1 �2 2 3 6 1

k1 0.0870 4 �4 3 �3 �3 �2 3

k2 0.3043 �6 4 �2 2 4 5 0

fðXÞ 0.8478 �2 �1 �1 1 1 2 �2

HB 460 �1 1 0 0 �1 1 1

@20f=@0x
2
3

51.11 7 6 3 �3 �6 �7 12a

a Very high value for fuzzy level.
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Substituting for @Y in (59) of @fðXÞ gives @f as a function of

@Z, that is,

@fðY;ZÞ ¼ ðrzf�ryf:J
�1 � CÞ@Z ð62Þ

From this equation, the constrained derivative with respect
to the independent vector Z is given by

rcf ¼
@0fðY;ZÞ
@0Z

¼ rzf�ryf � J�1 � C ð63Þ

wherercf is the constrained gradient vector of f with respect to
Z. Thus rcfðY;ZÞ must be null at the stationary points.

The Hessian matrix will correspond to the independent vec-

tor Z, and the elements of the Hessian matrix must be the con-
strained second derivatives. To show how this is obtained, let

rcf ¼ rzf�W � C ð64Þ

It thus follows that the ith row of the (constrained) Hessian

matrix is @rcf=@zi. The parameter W is a function of Y and Y
is a function of Z. Thus, the partial derivative of rcf with
respect to zi is based on the following chain rule:

@wj

@zi
¼ @wj

@yj

@yj
@zi

: ð65Þ

The illustrative example 4 described in (43)–(45) with its
input parameters values given in Table 6 is now solved using

the Jacobian Method. To determine the constrained extreme
points, let [4]:

Y ¼ ðx1; x2Þ and Z ¼ x3: ð66Þ

The equations for determining the stationary points are

thus given as [4]:

rcf ¼ 0

g1ðXÞ ¼ 0

g2ðXÞ ¼ 0

ð67Þ

or

a b c

a11 a12 a13

a21 a22 a23

0
B@

1
CA

x1

x2

x3

0
B@

1
CA ¼

0

b1

b2

0
B@

1
CA ð68Þ

such as

a ¼ 2c1d
�1ð�a22a13 þ a12a23Þ;

b ¼ 2c2d
�1ða21a13 � a11a23Þ and c ¼ 2c3:

For this numerical example, we have

a ¼ 10

3
; b ¼ � 28

3
and c ¼ 2:

The solution is X0 ¼ ð0:8043; 0:3478; 0:2826Þ and @2
0f=@0x

2
3 ¼

460

9
> 0. Hence X0 is the minimum point and the objective

function fðXÞ= 0.8478.

It is pointed out that both the Lagrangean Function method

and the Jacobian technique have given identical results for all
the parameters solutions and their corresponding fuzzy levels.
The only difference was for the fuzzy levels of the sufficiency

conditions given by the Hessian Matrix HB and the derivative

@2
0f=@0x

2
3 as they indicate different formulas.
In order to analyze more the proposed fuzzy logic based for-
mulation, six different scenarios of the same illustrative example

4 were designed as shown in Table 7. The results of solving the

scenarios using both the Lagrangean Function method and the
Jacobian technique are shown in the same table. These identical
results demonstrate the consistency and robustness of the

developed approach for incorporation with classical nonlinear
optimization problems for different selected levels of fuzziness.

The results indicated, on the other hand, that the sufficiency

condition of the Jacobian technique (@2
0f=@0x

2
3) is more suscep-

tible to variations of input parameters’ fuzziness than the

Lagrangean Function approach (HB).

In order to obtain a more in-depth analysis of the effect of
changing system parameters on the shape and features of the
consolidity region is investigated. Several scenarios of changing
parameter a11 are studied using the same fuzziness levels of

Table 6 for the Illustrative example 4. The corresponding con-
solidity charts are shown in Fig. 7, and the results of consolidity
chart analysis are summarized in Table 8. These results reveal

appreciable shifts in consolidity index from moderate value of
1.3734 to a higher value of 5.0613. Furthermore, the areas also

varied from 2.3 to 14.1 pu2, but still are within the small and
moderate values. The vertical value of the centroid also moves
upward from 1.75 to 5.6 pu, while changes in the horizontal

value of the centroid are limited between 1.05 and 2.20 pu.

7. Additional comments on the proposed approach

The proposed fuzzy logic-based quadratic and nonlinear pro-
gramming optimization has many advantages over other
reported techniques such as the stochastic programming’ chance
constraints programming, and the perturbation techniques,

these are:
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Figure 7 Consolidity regions (unconsolidated or quasi-consolidated classes) of the optimal solution fuzziness results of selected values of

parameter a11 of Illustrative example 4.
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Table 8 Results of consolidity regions analysis of the optimal solution corresponding to different values of parameter a11 of

Illustrative example 4.

Symbol Results of changes of parameter a11

0.5 1.0 1.5 3.0 4.0 5.0

R Elliptical Circular Elliptical Elliptical Elliptical Elliptical

Region

class

Quasi-

unconsolidated

Quasi-

unconsolidated

Quasi-

unconsolidated

Quasi-

unconsolidated

Unconsolidated Unconsolidated

S 53.94� or tan�1

(1.3734)

56.73� or tan�1

(1.5242)

59.97� or tan�1

(1.7300)

74.95� or tan�1

(3.7198)

77.71� or tan�1

(4.5911)

78.82� or tan�1

(5.0613)

C ¼ ðx; yÞ (1.20, 1.75) (1.35, 2.20) (1.40, 2.45) (1.15, 4.40) (2.20, 5.60) (1.05, 5.50)

A (pu2) 4.2 2.3 7.1 12.4 14.1 12.7

l1 ðpuÞ 3.1 1.7 3.9 4.9 5.5 5.5

l2 ðpuÞ 1.7 1.7 2.3 3.2 3.3 2.9

l2=l1 0.5484 1.0000 0.5897 0.6531 0.6000 0.5273
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(i) The suggested approach can be incorporated simply in
spreadsheet models and obtaining the corresponding
fuzzy level for each cell at each step of calculations.
Such spreadsheet representation can accommodate an

extended number of parameters and variables with pre-
sent scales of fuzzy levels. No special sophisticated soft-
ware is needed for algorithms implementation; only

macros built using normal Visual Basic Applications
(VBA) package.

(ii) The proposed approach is general in such a way that all

problem’s coefficients and parameters can associate with
their values corresponding fuzzy logic levels all over the
steps of the problem solution, and satisfying the condi-

tions of the normalized fuzzy matrices.
(iii) The presented consolidity analysis of the results through

representable consolidity charts represents an effective
way for examining the ability of the optimal solution

for withstanding changes due to input parameters
changes effects that takes place ‘‘on and above’’ normal
situations and stands [26–29].

(iv) For future implementations, all the basic fuzzy opera-
tions, fuzzy functions and matrices operations, as well
as fuzzy optimization operations could be transferred as

built-in function in special computational Toolbox in
Matlab or to be created as special functions inside other
likes software languages [22]. The building of such library
will strengthen the capability of the consolidity chart to

effectively handle various types of optimization regard-
less of their dimensionality, types and complexities.

8. Conclusions

It was illustrated using an illustrative example the effectiveness

of incorporating the consolidity chart in the solving and anal-
ysis of the quadratic and nonlinear programming problems in
a fully fuzzy environment. It was also shown that optimal solu-

tion robustness against change can be easily checked at the
final solution using the newly developed notion of the system

consolidity index.

Consolidity results charts of the fuzzy optimal solution were
sketched for each illustrative example revealing the degree of
susceptibility of the optimal solution for withstanding changes
due to any system or input parameters changes effects. These
results demonstrated the consistency and effectiveness of the

developed approach for incorporation with quadratic and non-
linear optimization problems solving and analysis.

It was also demonstrated that the geometric analysis of the

consolidity charts of each region can be carried out based on
specifying the type of consolidity region shape (such as ellipti-
cal or circular), slope or angle in degrees of the centerline of

the geometric, the location of the centroid of the geometric
shape, area of the geometric shape, lengths of principals diag-
onals of the shape, and the diversity ratio of consolidity points.

It is pointed out that the suggested approach opens the door

toward more future extensions of the proposed approach to
other fuzzy global optimization techniques and for solving
other classes of mathematical programming problems, such as

geometric programming, goal programming, integer and mixed
Integer programming, nonlinear programming, transportation
problems, assignment models, critical path methods, and opti-

mal scheduling problems. As the consolidity computations are
based on matrix manipulations, the approach is extendable to
optimization problems of high dimensional forms.

Other extensions are also recommended for handling exist-

ing artificial intelligent and expert systems-based techniques,
risk assessment in economic models, etc., with applications
to various operational engineering networks in different disci-

plines operating in fully fuzzy environments. Finally, work has
to be extended for building special computational Toolbox in
Matlab or special functions in other software languages for

easily executing the various optimization procedures of the
fuzzy optimization problems of different formulations.
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Systems (linear, nonlinear, 
multivariable, dynamic, … etc)

UnconsolidatedNeutralConsolidated

•  Well connected
•  Well linked
•  Robust
•  Under hold
•  Well joined

•  Neutrally Consolidated •  Weakly connected
•  Weakly linked.
•  Non-robust
•  Separated
•  Isolated

Degree of Consolidity (FO/(I+S))

FO/(I+S) =1 FO/(I+S) < 1 FO/(I+S) >1

Figure A.1 Basic definition of system consolidity [20–24].
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Appendix A. Basic definition of system consolidity index

Systems can be classified according to consolidity into three

categories as follows,4 see Fig. A.1 [21,22]:

(i) Consolidated Systems or well connected, under hold,

under grasp, well linked, robust or well joined systems,
(ii) Neutrally Consolidated Systems, and
(iii) Unconsolidated Systems or weakly connected, separated,

non-robust or isolated systems.

A system operating at a certain stable original state in fully
fuzzy environment is said to be consolidated if it is overall out-

put is suppressed corresponding to their combined input and
parameters effect, and vice versa for unconsolidated systems.
Neutrally consolidated systems correspond to marginal or bal-

anced reaction of output, versus combined input and system.
The system consolidity index is now presented in this section

as given by [20–22]. This index measures the system overall

output fuzziness behavior versus the combined input and sys-
tem parameters variations. It describes the degree of how the
systems react against input and system variation actions. Let
us assume a general system operating in fully fuzzy environ-

ment, having the following elements:
Input Parameters:

I ¼ ðVIi ; ‘IiÞ ðA:1Þ

such that VIi ; i ¼ 1; 2; . . . ;m describe the value of input

component Ii, and ‘Ii indicates its corresponding fuzzy level.

System Parameters:

S ¼ ðVSj ; ‘SjÞ ðA:2Þ

such that VSj ; j ¼ 1; 2; . . . ; n denote the value of system

parameter Sj, and ‘Sj denotes its corresponding fuzzy level.
4 Consolidity could be regarded as a general internal property of

physical systems that can also be defined far from fuzzy logic or rough

sets. Other consolidity indices, however, could be defined by

researchers but the concept will still remain the same.
Output Parameters:

O ¼ ðVOi
; ‘Oi
Þ ðA:3Þ

such that VOi
; i ¼ 1; 2; . . . ; k designate the value of output

component Oi, and ‘Oi
designates its corresponding fuzzy level.

We will apply in this investigation, the overall fuzzy levels

notion, first for the combined input and system parameters,
and second for output parameters. As the relation between
combined input and system with output is close to (or of the
like type) of the multiplicative relations, the multiplication

fuzziness property is applied for combining the fuzziness of
input and system parameters.

For the combined input and system parameters, we have

for the weighted fuzzy level to be denoted as the combined
Input and System Fuzziness Factor FIþS, given as:

F1þS ¼
Pm

i¼1VIi � ‘IiPm
i¼1VIi

þ
Pn

j¼1VSj � ‘SjPn
j¼1VSj

: ðA:4Þ

Similarly, for the Output Fuzziness Factor FO, we have

FO ¼
Pk

i¼1VOi
� ‘OiPk

i¼1VOi

: ðA:5Þ

Let the positive ratio jFO=FIþSj defines the SystemConsolidity
Index, to be denoted as FO=ðIþSÞ. Based on FO=ðIþSÞ the system

consolidity state can then be classified as [21,22]:

(i) Consolidated if F O=ðIþSÞ < 1, to be referred to as ‘‘Class

C’’.
(ii) Neutrally Consolidated if F O=ðIþSÞ � 1, to be denoted by

‘‘Class N’’.

(iii) Unconsolidated if F O=ðIþSÞ > 1, to be referred to as ‘‘Class

U’’.

For cases where the system consolidity indices lie at
both consolidated and unconsolidated parts, the system
consolidity will be designated as a Mixed-Consolidated class
or ‘‘Class M’’. Other classes are Quasi-Consolidated ‘‘Class
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Figure A.2 Various classifications of consolidity regions [20–24].
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~C’’ (or Quasi-Unconsolidated ‘‘Class ~U’’) if the prevailing areas
of the regions are Consolidated (or Unconsolidated). Finally,
the various classifications of consolidity regions are elucidated

in Fig. A.2 [20–24].
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